7k^2=4k^2+10

Simple and best practice solution for 7k^2=4k^2+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7k^2=4k^2+10 equation:



7k^2=4k^2+10
We move all terms to the left:
7k^2-(4k^2+10)=0
We get rid of parentheses
7k^2-4k^2-10=0
We add all the numbers together, and all the variables
3k^2-10=0
a = 3; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·3·(-10)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*3}=\frac{0-2\sqrt{30}}{6} =-\frac{2\sqrt{30}}{6} =-\frac{\sqrt{30}}{3} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*3}=\frac{0+2\sqrt{30}}{6} =\frac{2\sqrt{30}}{6} =\frac{\sqrt{30}}{3} $

See similar equations:

| x+12+3x+1=2x+3 | | 6y-8=-4y+6 | | 2r+5r-6r=18 | | 7x/24=10 | | 33x+8=33x | | K/100*k/100+11=10 | | 2x+25=133 | | 15x+8x+18-49=90 | | 20+.5x=30+.25x | | 7(2n-3)=7(3n+2) | | 3x-5+53=180 | | 8x+40=4(x+5) | | 1+8a=-15 | | 1.3n=3.3n+2.8 | | Y/3+1/7=y/7-1/7 | | 10/25x+5=250 | | 5p-11=1+7p | | 12x/3+7=6x+15 | | -3=12y—5(2y-7) | | 1/4x=2/8 | | 276=-w+72 | | 12/3x+7=6x+15 | | 33x=33x+58 | | 7x+3x=2x-39 | | 2x+1.2=5 | | m+15=-19 | | 144=8(3n-3) | | -17=-8/3v-1 | | -16-7(2x+3)=23+2x | | -16+3v=3v+4v | | 4(x+5)=7x+47 | | -16-7(2x+3)=23-x |

Equations solver categories